- You are here: Home
- Services
- ISH/FISH Services
- FISH Applications
- Telomere Length Analysis (qPCR assay)
Services
-
Cell Services
- Cell Line Authentication
- Cell Surface Marker Validation Service
-
Cell Line Testing and Assays
- Toxicology Assay
- Drug-Resistant Cell Models
- Cell Viability Assays
- Cell Proliferation Assays
- Cell Migration Assays
- Soft Agar Colony Formation Assay Service
- SRB Assay
- Cell Apoptosis Assays
- Cell Cycle Assays
- Cell Angiogenesis Assays
- DNA/RNA Extraction
- Custom Cell & Tissue Lysate Service
- Cellular Phosphorylation Assays
- Stability Testing
- Sterility Testing
- Endotoxin Detection and Removal
- Phagocytosis Assays
- Cell-Based Screening and Profiling Services
- 3D-Based Services
- Custom Cell Services
- Cell-based LNP Evaluation
-
Stem Cell Research
- iPSC Generation
- iPSC Characterization
-
iPSC Differentiation
- Neural Stem Cells Differentiation Service from iPSC
- Astrocyte Differentiation Service from iPSC
- Retinal Pigment Epithelium (RPE) Differentiation Service from iPSC
- Cardiomyocyte Differentiation Service from iPSC
- T Cell, NK Cell Differentiation Service from iPSC
- Hepatocyte Differentiation Service from iPSC
- Beta Cell Differentiation Service from iPSC
- Brain Organoid Differentiation Service from iPSC
- Cardiac Organoid Differentiation Service from iPSC
- Kidney Organoid Differentiation Service from iPSC
- GABAnergic Neuron Differentiation Service from iPSC
- Undifferentiated iPSC Detection
- iPSC Gene Editing
- iPSC Expanding Service
- MSC Services
- Stem Cell Assay Development and Screening
- Cell Immortalization
-
ISH/FISH Services
- In Situ Hybridization (ISH) & RNAscope Service
- Fluorescent In Situ Hybridization
- FISH Probe Design, Synthesis and Testing Service
-
FISH Applications
- Multicolor FISH (M-FISH) Analysis
- Chromosome Analysis of ES and iPS Cells
- RNA FISH in Plant Service
- Mouse Model and PDX Analysis (FISH)
- Cell Transplantation Analysis (FISH)
- In Situ Detection of CAR-T Cells & Oncolytic Viruses
- CAR-T/CAR-NK Target Assessment Service (ISH)
- ImmunoFISH Analysis (FISH+IHC)
- Splice Variant Analysis (FISH)
- Telomere Length Analysis (Q-FISH)
- Telomere Length Analysis (qPCR assay)
- FISH Analysis of Microorganisms
- Neoplasms FISH Analysis
- CARD-FISH for Environmental Microorganisms (FISH)
- FISH Quality Control Services
- QuantiGene Plex Assay
- Circulating Tumor Cell (CTC) FISH
- mtRNA Analysis (FISH)
- In Situ Detection of Chemokines/Cytokines
- In Situ Detection of Virus
- Transgene Mapping (FISH)
- Transgene Mapping (Locus Amplification & Sequencing)
- Stable Cell Line Genetic Stability Testing
- Genetic Stability Testing (Locus Amplification & Sequencing + ddPCR)
- Clonality Analysis Service (FISH)
- Karyotyping (G-banded) Service
- Animal Chromosome Analysis (G-banded) Service
- AAV Biodistribution Analysis (RNA ISH)
- Molecular Karyotyping (aCGH)
- Droplet Digital PCR (ddPCR) Service
- Digital ISH Image Quantification and Statistical Analysis
- SCE (Sister Chromatid Exchange) Analysis
- Biosample Services
- Histology Services
- Exosome Research Services
- In Vitro DMPK Services
-
In Vivo DMPK Services
- Pharmacokinetic and Toxicokinetic
- PK/PD Biomarker Analysis
- Bioavailability and Bioequivalence
- Bioanalytical Package
- Metabolite Profiling and Identification
- In Vivo Toxicity Study
- Mass Balance, Excretion and Expired Air Collection
- Administration Routes and Biofluid Sampling
- Quantitative Tissue Distribution
- Target Tissue Exposure
- In Vivo Blood-Brain-Barrier Assay
- Drug Toxicity Services
Telomere Length Analysis (qPCR assay)
Telomeres represent the nucleotide repeat sequences at the ends of chromosomes and are important for chromosome stability. They can shorten at each round of DNA replication mainly because of incomplete DNA synthesis of the lagging strand. Reduced relative telomere length is associated with aging and a range of disease states.
Creative Bioarray employs qPCR assay to measure absolute telomere length, which is a simple and reproducible method. The primers, conceived to create a brief, fixed-length product, can attach only one fluorescent group to each amplicon produced in the experiment, distinguishably different from the mentioned SYBR green-based methods. We achieve this by using our distinctive primers for both telomeric repeat amplification and the amplification of a single-copy gene reference sequence. Consequently, this leads to elongated linear ranges for our calibration curves used in this technique and a more precise length determination for shorter telomeres.
Features:
- Human Telomere Length Analysis Service, Mouse Telomere Length Analysis Service, Rat Telomere Length Analysis Service, Monkey Telomere Length Analysis Service, Rare Species Telomere Length Analysis Service
- High accuracy and sensitivity
- Fast turnaround time
- Competitive pricing
Creative Bioarray offers Telomere Length Analysis (qPCR assay) for your scientific research as follows:
- Sample preparation
- Perform qPCR assay
- Data analysis
- Delivery of the data via e-mail
Quotation and ordering
Our customer service representatives are available 24hr a day! We thank you for choosing Creative Bioarray at your preferred Telomere Length Analysis (qPCR assay) Service.
References
- Blackburn E, Gall J. A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. Journal of molecular biology. 1978;120(1):33–53. pmid:642006
- Moyzis R, Buckingham J, Cram L, Dani M, Deaven L, Jones M, et al. A highly conserved repetitive DNA sequence,(TTAGGG) n, present at the telomeres of human chromosomes. Proceedings of the National Academy of Sciences. 1988;85(18):6622–6. pmid:3413114
- Allshire RC, Dempster M, Hastie ND. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucleic Acids Res. 1989;17(12):4611–27. pmid:2664709
- Therkelsen A, Nielsen A, Koch J, Hindkjaer J, Kølvraa S. Staining of human telomeres with primed in situ labeling (PRINS). Cytogenet Cell Genet. 1995;68(1–2):115–8. Epub 1995/01/01. pmid:7525160.
- Feuerbach L, Sieverling L, Deeg K, Ginsbach P, Hutter B, Buchhalter I, et al. TelomereHunter–in silico estimation of telomere content and composition from cancer genomes. BMC bioinformatics. 2019;20(1):1–11. pmid:30606105
- Morinha F, Magalhães P, Blanco G. Standard guidelines for the publication of telomere qPCR results in evolutionary ecology. Molecular Ecology Resources. 2020;20(3). pmid:32133733
- Bustin S, Benes V, Garson J, Hellemans J, Huggett J, Kubista M, et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry. 2009;55(4):611–22. pmid:19246619
Explore Other Options
For research use only. Not for any other purpose.