About Us
-
Cell Services
- Cell Line Authentication
- Cell Surface Marker Validation Service
-
Cell Line Testing and Assays
- Toxicology Assay
- Drug-Resistant Cell Models
- Cell Viability Assays
- Cell Proliferation Assays
- Cell Migration Assays
- Soft Agar Colony Formation Assay Service
- SRB Assay
- Cell Apoptosis Assays
- Cell Cycle Assays
- Cell Angiogenesis Assays
- DNA/RNA Extraction
- Custom Cell & Tissue Lysate Service
- Cellular Phosphorylation Assays
- Stability Testing
- Sterility Testing
- Endotoxin Detection and Removal
- Phagocytosis Assays
- Cell-Based Screening and Profiling Services
- 3D-Based Services
- Custom Cell Services
- Cell-based LNP Evaluation
-
Stem Cell Research
- iPSC Generation
- iPSC Characterization
-
iPSC Differentiation
- Neural Stem Cells Differentiation Service from iPSC
- Astrocyte Differentiation Service from iPSC
- Retinal Pigment Epithelium (RPE) Differentiation Service from iPSC
- Cardiomyocyte Differentiation Service from iPSC
- T Cell, NK Cell Differentiation Service from iPSC
- Hepatocyte Differentiation Service from iPSC
- Beta Cell Differentiation Service from iPSC
- Brain Organoid Differentiation Service from iPSC
- Cardiac Organoid Differentiation Service from iPSC
- Kidney Organoid Differentiation Service from iPSC
- GABAnergic Neuron Differentiation Service from iPSC
- Undifferentiated iPSC Detection
- iPSC Gene Editing
- iPSC Expanding Service
- MSC Services
- Stem Cell Assay Development and Screening
- Cell Immortalization
-
ISH/FISH Services
- In Situ Hybridization (ISH) & RNAscope Service
- Fluorescent In Situ Hybridization
- FISH Probe Design, Synthesis and Testing Service
-
FISH Applications
- Multicolor FISH (M-FISH) Analysis
- Chromosome Analysis of ES and iPS Cells
- RNA FISH in Plant Service
- Mouse Model and PDX Analysis (FISH)
- Cell Transplantation Analysis (FISH)
- In Situ Detection of CAR-T Cells & Oncolytic Viruses
- CAR-T/CAR-NK Target Assessment Service (ISH)
- ImmunoFISH Analysis (FISH+IHC)
- Splice Variant Analysis (FISH)
- Telomere Length Analysis (Q-FISH)
- Telomere Length Analysis (qPCR assay)
- FISH Analysis of Microorganisms
- Neoplasms FISH Analysis
- CARD-FISH for Environmental Microorganisms (FISH)
- FISH Quality Control Services
- QuantiGene Plex Assay
- Circulating Tumor Cell (CTC) FISH
- mtRNA Analysis (FISH)
- In Situ Detection of Chemokines/Cytokines
- In Situ Detection of Virus
- Transgene Mapping (FISH)
- Transgene Mapping (Locus Amplification & Sequencing)
- Stable Cell Line Genetic Stability Testing
- Genetic Stability Testing (Locus Amplification & Sequencing + ddPCR)
- Clonality Analysis Service (FISH)
- Karyotyping (G-banded) Service
- Animal Chromosome Analysis (G-banded) Service
- AAV Biodistribution Analysis (RNA ISH)
- Molecular Karyotyping (aCGH)
- Droplet Digital PCR (ddPCR) Service
- Digital ISH Image Quantification and Statistical Analysis
- SCE (Sister Chromatid Exchange) Analysis
- Biosample Services
- Histology Services
- Exosome Research Services
- In Vitro DMPK Services
-
In Vivo DMPK Services
- Pharmacokinetic and Toxicokinetic
- PK/PD Biomarker Analysis
- Bioavailability and Bioequivalence
- Bioanalytical Package
- Metabolite Profiling and Identification
- In Vivo Toxicity Study
- Mass Balance, Excretion and Expired Air Collection
- Administration Routes and Biofluid Sampling
- Quantitative Tissue Distribution
- Target Tissue Exposure
- In Vivo Blood-Brain-Barrier Assay
- Drug Toxicity Services
Giemsa Staining Protocol
GUIDELINE
- Giemsa stain was a name adopted from a Germany chemist scientist, for his application of a combination of reagents in demonstrating the presence of parasites in malaria.
- It belongs to a group of stains known as Romanowsky stains. These are neutral stains made up of a mixture of oxidized methylene blue, azure, and Eosin Y and they performed on an air-dried slide that is post-fixed with methanol. Romanowsky stains are applied in the differentiation of cells, pathological examinations of samples like blood and bone marrow films and demonstration of parasites e.g. malaria.
METHODS
- Preparation of the Giemsa Stain Stock solution. Add 3.8 g of Giemsa powder and dissolve into 250 ml of methanol, heat the solution up to 60°C. Then, add 250 ml of glycerin to the solution slowly. Filter the solution and leave it to stand for about 1-2 months before use.
- Preparation of Working solution. Add 10 ml of stock solution to 80 ml of distilled water and 10 ml of methanol.
- On a clean dry microscopic glass slide, make a thin film of the specimen and leave to air dry.
- Dip the smear (2-3 dips) into pure methanol for fixation of the smear, leave to air dry for 30 seconds.
- Flood the slide with 5% Giemsa stain solution for 20-30 minutes.
- Flush with tap water and leave to dry.
- Add a thick smear of blood and air dry for 1 hour on a staining rack.
- Dip the thick blood smear into diluted Giemsa stain (prepared by taking 1ml of the stock solution and adding to 49 ml of phosphate buffer or distilled water, but the results may vary differently).
- Wash the smear by dipping in in buffered water of distilled water for 3-5 minutes. Leave it to dry.
NOTES
- In case of emergencies, leave the Giemsa stain solution for 5-10 minutes.
- Working Giemsa stain must be prepared shortly before use.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.