About Us
-
Cell Services
- Cell Line Authentication
- Cell Surface Marker Validation Service
-
Cell Line Testing and Assays
- Toxicology Assay
- Drug-Resistant Cell Models
- Cell Viability Assays
- Cell Proliferation Assays
- Cell Migration Assays
- Soft Agar Colony Formation Assay Service
- SRB Assay
- Cell Apoptosis Assays
- Cell Cycle Assays
- Cell Angiogenesis Assays
- DNA/RNA Extraction
- Custom Cell & Tissue Lysate Service
- Cellular Phosphorylation Assays
- Stability Testing
- Sterility Testing
- Endotoxin Detection and Removal
- Phagocytosis Assays
- Cell-Based Screening and Profiling Services
- 3D-Based Services
- Custom Cell Services
- Cell-based LNP Evaluation
-
Stem Cell Research
- iPSC Generation
- iPSC Characterization
-
iPSC Differentiation
- Neural Stem Cells Differentiation Service from iPSC
- Astrocyte Differentiation Service from iPSC
- Retinal Pigment Epithelium (RPE) Differentiation Service from iPSC
- Cardiomyocyte Differentiation Service from iPSC
- T Cell, NK Cell Differentiation Service from iPSC
- Hepatocyte Differentiation Service from iPSC
- Beta Cell Differentiation Service from iPSC
- Brain Organoid Differentiation Service from iPSC
- Cardiac Organoid Differentiation Service from iPSC
- Kidney Organoid Differentiation Service from iPSC
- GABAnergic Neuron Differentiation Service from iPSC
- Undifferentiated iPSC Detection
- iPSC Gene Editing
- iPSC Expanding Service
- MSC Services
- Stem Cell Assay Development and Screening
- Cell Immortalization
-
ISH/FISH Services
- In Situ Hybridization (ISH) & RNAscope Service
- Fluorescent In Situ Hybridization
- FISH Probe Design, Synthesis and Testing Service
-
FISH Applications
- Multicolor FISH (M-FISH) Analysis
- Chromosome Analysis of ES and iPS Cells
- RNA FISH in Plant Service
- Mouse Model and PDX Analysis (FISH)
- Cell Transplantation Analysis (FISH)
- In Situ Detection of CAR-T Cells & Oncolytic Viruses
- CAR-T/CAR-NK Target Assessment Service (ISH)
- ImmunoFISH Analysis (FISH+IHC)
- Splice Variant Analysis (FISH)
- Telomere Length Analysis (Q-FISH)
- Telomere Length Analysis (qPCR assay)
- FISH Analysis of Microorganisms
- Neoplasms FISH Analysis
- CARD-FISH for Environmental Microorganisms (FISH)
- FISH Quality Control Services
- QuantiGene Plex Assay
- Circulating Tumor Cell (CTC) FISH
- mtRNA Analysis (FISH)
- In Situ Detection of Chemokines/Cytokines
- In Situ Detection of Virus
- Transgene Mapping (FISH)
- Transgene Mapping (Locus Amplification & Sequencing)
- Stable Cell Line Genetic Stability Testing
- Genetic Stability Testing (Locus Amplification & Sequencing + ddPCR)
- Clonality Analysis Service (FISH)
- Karyotyping (G-banded) Service
- Animal Chromosome Analysis (G-banded) Service
- AAV Biodistribution Analysis (RNA ISH)
- Molecular Karyotyping (aCGH)
- Droplet Digital PCR (ddPCR) Service
- Digital ISH Image Quantification and Statistical Analysis
- SCE (Sister Chromatid Exchange) Analysis
- Biosample Services
- Histology Services
- Exosome Research Services
- In Vitro DMPK Services
-
In Vivo DMPK Services
- Pharmacokinetic and Toxicokinetic
- PK/PD Biomarker Analysis
- Bioavailability and Bioequivalence
- Bioanalytical Package
- Metabolite Profiling and Identification
- In Vivo Toxicity Study
- Mass Balance, Excretion and Expired Air Collection
- Administration Routes and Biofluid Sampling
- Quantitative Tissue Distribution
- Target Tissue Exposure
- In Vivo Blood-Brain-Barrier Assay
- Drug Toxicity Services
C1q Measurement Protocol by ELISA
GUIDELINE
This experiment describes the procedure for the enzyme-linked immunosorbent assay C1q assay. The binding of solid-phase condensed IgG encapsulated on a plastic plate to enzyme-linked C1q is inhibited by immune complexes in the specimen, making it a competitive inhibition test. To avoid interference from endogenous C1q in the specimen, it should be removed beforehand with IgG immunosorbent.
METHODS
- Encapsulated cohesive IgG is taken from cohesive IgG (100 μg/ml) dialyzed overnight by 0.02 mol/L Tris-HCl buffer (pH 9.0) and added into the wells of polystyrene plates. 100 μl per well, after being encapsulated for 30 min at 37°C. The wells are washed three times with buffer, the 1st and 3rd times with 0.2 mol/L Tris-HCl buffer (pH 7.4), and the 2nd time with the same buffer containing 0.05% Tween20). Vacuum dry and store at 4°C.
- Take 50 μl of serum specimen, add 50 μl of 0.2 mol/L EDTA (pH 7.6), and act for 10 min at room temperature to free endogenous C1q. Then add 500 μl of IgG immunosorbent, oscillate at room temperature for 20 min, and then centrifuge at 500 r/min for 5 min to obtain 1:10 diluted supernatant.
- Take the plastic reaction plate that has been coated with coagulated IgG, add 90 μl of the above supernatant and 10 μl of enzyme-linked C1q (1:100, 200 dilution) to each well, and react at room temperature for 20 min. Then, wash 3 times with 0.2 mol/L Tris-HCl buffer (pH 7.4) containing 0.2 mol/L NaCl, 0.05% Tween20, and then add 100 μl of substrate solution (pH 6.0, 0.1 mol/L phosphate citrate buffer in 50 ml, add o-phenylenediamine 20 mg, 30% (W/V) hydrogen peroxide 10 μl), let it rest for 30 min at room temperature, add 2 mol/L sulfuric acid 50 μl to abort the reaction, and read the absorbance value at 492 nm. For quantification, a standard curve can be made with coagulated IgG to measure the relative content of immune complexes.
NOTES
- Ensure proper coating of the ELISA plate with the capture antibody specific for C1q. The coating buffer, incubation time, and temperature should be carefully followed as per the protocol to achieve optimal capture of the C1q protein.
- Thoroughly block the coated wells to prevent nonspecific binding of other proteins to the plate. Common blocking agents include BSA (bovine serum albumin) or non-fat dry milk. Follow the recommended blocking buffer, incubation time, and temperature stated in the protocol.
- Prepare a precise standard curve using known concentrations of the C1q standard. This is essential for accurate quantification of C1q levels in the samples. Handle the standard curve samples carefully to avoid introducing variability.
- Thorough and consistent washing of the plate between steps is essential to remove unbound substances and reduce background noise. Follow the recommended wash buffer, wash times, and agitation methods to minimize variability.
RELATED PRODUCTS & SERVICES
For research use only. Not for any other purpose.